


Fig. 1. (a) Electric field configuration for the TE<sub>10</sub> mode. (b) Electric field configuration for the TE<sub>01</sub> mode.

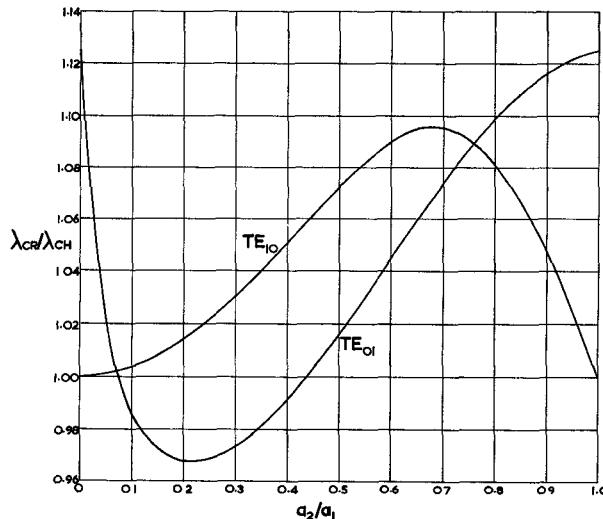



Fig. 2. Cutoff characteristics for the TE<sub>10</sub> and TE<sub>01</sub> modes in a channel waveguide having  $b_1/a_1 = 0.444$  and  $b_2/b_1 = 0.5$ .  $\lambda_{CR}$  is the cutoff wavelength of a rectangular waveguide with broad dimension  $a_1$ , and  $\lambda_{CH}$  is the cutoff wavelength of the channel waveguide.

Cohn's method approximates the fundamental mode. As  $a_2/a_1$  is increased from 0 to 1, Cohn's method initially follows the TE<sub>10</sub> mode, then switches to the TE<sub>01</sub> mode as it becomes the dominant mode, and finally changes back to the TE<sub>10</sub> mode.

For practical applications the TE<sub>01</sub> mode is obviously unwanted because its power-handling capacity is very small; however, it

should be quite easy to ensure that only the TE<sub>10</sub> mode is excited, because the polarizations of the two modes are orthogonal.

C. A. MUIJLYK  
J. B. DAVIES  
Dept. of Elec. and Elec. Engrg.  
University of Sheffield,  
Sheffield 1, England

#### Corrections to "Fringing Capacitance in Strip-Line Coupler Design"

The author of the above<sup>1</sup> wishes to thank Charles Lamensdorf, of the Hazeltine Corp., Greenlawn, N. Y., for pointing out the following.

A pi ( $\pi$ ) symbol is missing in the first equation for the parameter  $s/b$ . The equation should read

$$\frac{s}{b} = \frac{2}{\pi} \operatorname{arc \tanh} \left[ \exp \frac{\pi \eta_0}{4\sqrt{\epsilon_r}} \left( \frac{1}{Z_2} - \frac{1}{Z_1} \right) \right].$$

While in the third equation given for  $s/b$ , the characteristic impedance ( $Z_0$ ) should not appear under the radial sign. The equation should read

$$\frac{s}{b} = -\frac{1}{\pi} \ln \left[ \tanh \left( \frac{\pi \eta_0}{4Z_0\sqrt{\epsilon_r}} \frac{k}{\sqrt{1-k^2}} \right) \right].$$

An additional correction is needed.

$W/b \geq 0.35$  rather than  $W/b \rightarrow 0.35$ .

J. SINGLETARY, JR.  
Corning Glass Works  
Raleigh, N. C.

Manuscripts received November 28, 1966 and December 16, 1966.

<sup>1</sup> J. Singletary, Jr., *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol. MTT-14, p. 398, August 1966.